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Abstract-The conformal solution method based on the hard sphere expansion (HSE) theory predicts thermodynamic 
properties of mixtures by separating the mixture properties into a contribution from repulsion and other contribu- 
tions from various types of intermolecular attraction. The original HSE, however, has a tendency to show in- 
creasing relative error in the prediction of thermodynamics properties as the difference of molecular sizes in mix- 
tures increases since the radial distribution functions of a mixture are represented by that of a pure reference in the 
mean density approximation (MDA). When the hard convex body (HCB) equation of state was substituted for the 
hard sphere equation of state in the repulsion term to overcome the shortcoming of the original HSE, better results 
on the K-value in binary hydrocarbon mixtures were obtained. 
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INTRODUCTION 

There has been a great need for accurate thermodynamic 
data in the petroleum and many other industries. Since all 
the necessary thermodynamic properties cannot be obtained 
from direct measurements alone, it becomes very important 
to investigate some theoretical methods for the accurate pre- 
diction of those properties. Many empirical methods have 
been developed to correlate experimental data available; the 
simplest way is the application of  the semi-empirical or em- 
pirical equations of state. 

However, these equations are accurate only in the temper- 
ature and pressure ranges where experimental values are used 
in the curve fitting or regression. Another difficulty is that this 
method usually requires empirical mixing rules in the cal- 
culation of mixture properties. The empirical mixing rules are 
known not to properly describe the composition dependence of 
thermodynamic properties of mixtures which are particularly 
important in the phase equilibrium predictions. Some theoret- 
ically based methods have been suggested to calculate the mix- 
ture properties with minimum assumptions and without the 
empirical mixing rules. 

It is a good example to apply the corresponding states prin- 
ciple (CSP) based on statistical thermodynamics. An essential 
method is also known as the conformal solution theory, which 
predicts thermodynamic properties from one or more refer- 
ence fluids whose thermodynamic properties are well describ- 
ed. Also, the perturbation method expresses an intermolecuiar 
potential function by a repulsion contribution and other con- 
tributious from attraction. The HSE procedure is known as one 
of the most successful methods making use of the CSP and 
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perturbation method. 
The HSE theory predicts thermodynamic properties of a mix- 

ture by separating its properties into the repulsion and attraction 
contributions. While the attraction contribution is obtained by 
the corresponding states procedure from a similar contribution 
in a pure reference fluid, the repulsion contribution is calculat- 
ed directly from an appropriate equation of state for hard sphere 
mixtures. A variational procedure is also applied to the de- 
termination of the effective diameter for the reference fluid. 

The advantage of the HSE conformal solution theory is to 
avoid the use of empirical mixing rules involved in mixture 
calculations and to represent better composition dependence. 
The original HSE theory, however, has a tendency to show in- 
creasing relative error on the prediction of thermodynamics prop- 

erties as the difference of molecular sizes in the mixture in- 
creases, which may be due to the fact that the radial distribu- 
tion function of the mixture is represented by that of a pure 
reference in the mean density approximation (MDA). 

This work substitutes the hard convex body (HCB) equa- 
tion of state for the hard sphere (HS) equation of state in 
the repulsion term to improve the original HSE under the as- 
sumption that the molecules in mixtures can be described as 
a hard convex body model. The prolate spherocylinder model 
among the various HCB models is adopted to predict K-values 
in several binary hydrocarbon systems in this work. 

HSE CONFORMAL SOLUTION THEORY 

603 

The description of thermodynamic behavior from statistical 
mechanics gives a better understanding of the physical prop- 
erties of mixtures in equill"orium. The entire problem of predict- 
ing equilibrium thermodynamic properties of a fluid from molec- 
ular characteristics involves coupling two types of information, 
that describing the potential between molecules and that de- 
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Fig. 1. The HSE corresponding states procedure for mixture 
properties. 

scribing the structure of the fluid with regard to the location 
of molecules relative to each other. 

The HSE conformal solution theory developed a new type 
of corresponding states method with the strongest theoretical 
basis for prediction of mixture properties. This procedure 
separates thermodynamic properties into a contribution aris- 
ing from intermolecular hard sphere repulsion and other con- 
tributions resulting from various types of intermolecular attrac- 
tion where the CSP is embedded. The HSE method avoids 
the use of the empirical mixing roles involved in mixture cal- 
culations and has been known to represent better composition 
dependence than the empirical mixing roles. This type of the 
CSP was originally proposed by Mansoori and Leland [1972] 
and developed further by Chen et al. [1982] and Hang [1985]. 

As shown in Fig. 1, any dimensionless residual property 
in the HSE method can be divided into two parts when asym- 
metrical attraction contributions resulting from the long range 
forces are neglected. One is the repulsion contribution of mix- 
ture which can be obtained directly from the Mansoori-Car- 
nahan-Starling-Leland (MCSL) hard sphere mixture equation 
[1971]. Hang [1985] gave an alternate and more convenient 
form for the compressibility factor Z as follows : 

Zm M = 1 +r/m(3C~--2)+ r/2(3)'-3a+ 1)-'}4,/3 (1) 
(1 - Tim )3 

where rim is the packing fraction related to the mixture den- 
sity (pro) and diameter (db of constituent i as in Eq. (2) : 

/~ 3 rl,, : ~Nap, , . f fx ,  d, (2) 

In Eq. (2), NA is the Avogadro number. Also, the two dimen- 
sionless parameters in Eq. (1) are defined as: 

<d> <d2> 
a =  < d 3 ~  ( 3 )  

< d 2 >  3 

~z= < d 3 >  2 (4) 

with 

<d  k > = E x, d~ (5)  
i 

Eq. (1) is just another expression of the hard convex body 
(HCB) equation of state proposed by Boublik [1974], which 

will be discussed later. For pure components, the MCSL equa- 
tion as well as Eq. (1) reduces to the Carnahan-Starling equa- 
tion of state [1969] given by 

Z/4S _ 1 + 7/+ r/2- 03 (6) 
(1 - 77)3 

where q is also the packing fraction and corresponds to 13,. 
as in Eq. (2) in the case of mixture. 

The description of the repulsion contribution by means of 
an accurate rigid body equation of state presents some seri- 
ous difficulties which result from high sensitivity of the re- 
pulsion contribution to the size of the rigid body. It is, there- 
fore, very important in the HSE calculations to find the effec- 
tive hard sphere diameter, di, of each constituent in the mixture. 

In the HSE corresponding states principle method, a precise 
value of the optimal repulsion must be determined for the com- 
pressibility factor and for the dimensionless residual Helmholtz 
flee energy. Hang and Leland [1986] expanded any dimension- 
less residual properties X with respect to 1/T around a parame- 
ter called "characteristic temperature To" at constant density 
and truncated the expansion of X after the (1/'1") 2 term. The hard 
sphere property of X can be shown by following equation : 

X : [ X o _  ( 3X ~ 1 + 1 ~  ~2X [ i ] 
)oVO ~ 5[(q -rjo  j (7) 

By making use of the variational theory and equating Eq. 
(7) for the compressibility factor to the Carnahan-Starling equa- 
tion in Eq. (6), the effective diameter of the reference fluid 
can be evaluated. 

The attraction contributions from isotropic interactions and 
all induction effects in the HSE method, on the other hand, are 
determined by corresponding states using shape factors evalu- 
ated relative to a pure reference fluid. To make use of the CSP, 
the effective pair potential u(r) is expressed as : 

u(r) = u+ + u- + u~w " (8) 

where u § is a positive repulsion of hard spheres of diameter 
d, u-  is a negative symmetrical attractive potential, and u "~" 
accounts for asymmetric long-range orientation dependent 
pair interactions which will be omitted in this work. For the 
conformality of the u- portion, u- is assumed to be of the 
following form : 

/s : efo[r/d] (9) 

In Eq. (9), fo is a universal function for all constituents of 
the mixture and the analytical form of fo- need not be specifi- 
ed. As a result of the conformality assumption, the follow- 
ing relationships for an individual component i and the ref- 
erence fluid r are obtained [Leach et al., 1968]: 

~'i =aoOir Tci, di3=boOirVci (10) 

er =aoTcr, d3r:boVcr (11) 

where the subscript 'c' denotes critical properties, ao and bo 
are parameters which have the same values for all constituents 
conformal to the reference fluid, and 0~ and ~ are the energy 
and volume shape factors to establish the conformality between 
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component i and the reference r by satisfying Eq. (9). From the 
definitions of diameters in Eqs. (10) and (11), the following 
relation can be obtained. 

- d;~ (12) d?- v~-O~v~, 

Eq. (12) will be used for the determination of one molecular 
dimension needed to represent a hard convex body model. 

The CSP is applied to predict the attraction contribution to 
a dimensionless residual property of the mixture from that of 
the pure reference fluid as explained above, and thus the at- 
traction contribution to the mixture properties is given by the 
difference between the value obtained from the equation of 
state for the reference fluid and the hard sphere repulsion 
value to the reference property as determined by the Carna- 
han-Starling equation of state. Because equations of state used 
in this work are not given in the reduced form, the follow- 
ing equivalent temperature and density conditions are defin- 
ed, at which any given fluid and the reference exist in cor- 
responding states. 

For constituent i : 

O (-~-~-~ / ~ _  O ~m VC _ ~md 3 
T; : (Tc jTc iOi~= ei, [i:Vci~)i  r d~ 3 (13) 

For the reference fluid : 

T~ T c j T c ~ =  (-~-~-, / TruEr, -~ p ~ Vcr d3 (14) 

In Eqs. (13) and (14), ~ and pO are the equivalent tem- 
perature and density, and T" and V; are the pseudo-critical 
temperature and volume which are related to the pseudo-par- 
ameters ~ and a 3 as follows: 

= aoTo ~3 = boVc (15) 

Mansoori and Leland [1972] have derived the pseudo- 
parameters ~ and ~3 for the attraction term of the HSE theo- 
ry using the mean density approximation (MDA) and pair- 
wise additivity of a potential. The MDA to give the relation- 
ship between the RDF's of mixture and the reference fluid is 
defined as follows: 

g0(r) = go(r/~i, p'q~, kT/eq) (16) 

where go is the RDF of the reference fluid and k is the Boltz- 
mann constant. In Eq. (16), p' is the mean density given by 
the relation ' 3 p=p,,(t~flc~j) where 9,, is the mixture density, 
and c~ is the effective diameter defined as in Eq. (17) [Chen 
et al., 1987]. 

cr~ : ~]~,x i xj ~3 (17) 
t 1 

As seen in Eq. (16), the MDA assumes that the distribution 
function in the mixture is the same as in a pure component 
with given pair interaction, but at a density different from that 
of the mixture. The idea is essentially to replace the true envi- 
ronment around the pair by that of an average, and Eq. (16) is 
the basic assumption required in the derivation of the van 

der Waals and HSE conformal solution methods whose effec- 
tiveness is indicated to some extent by the success of those 
theories. Recently, the MDA combined with the Kirkwood- 
Buff solution theory was successfully used to predict solubil- 
ity of solutes in supercritical fluids [Kwon and Mansoori, 1993; 
Kwon et al., 1997]. 

The form of the pseudo-parameters is chosen so that the 
attraction terms for the pure reference are conformal to those of 
the mixture. Equating the two attraction terms in equations for 
mixture and pure reference yields the following HSE pseudo- 
parameters [Chen et al., 1987] : 

~.~xixjEi2jd 3 [~. ~xixjEijd3] 2 
' J  -d 3 -  ' ~  ( 1 8 )  

E :  ~Y, XiXjEijd 3'  ~Y~xixjF.i2d 3 
l ]  t j  

Now using the relationship between potential parameters and 
critical properties as in Eq. (10), and introducing the modifi- 
ed Lorentz-Berthelot forms of the unlike pair interactions as 
follows : 

ei ~ "e e ,,/2 d3)/2.0 (19) 

The HSE pseudo-parameter equation (18) then becomes the 
pseudo-critical equation. Using Eqs. (15), (18), and (19), the fol- 
lowing pseudo-criticals can be obtained : 

TC i j 
~XiXj(OirTci  OjrTcj)l/2~ijJ~j(~)irVci + ~jrVcj)(1/2) 

J 
[~y_,x i xj (0~ Tci Off Tcj 11/2~i j ~ j  (~)ir Vci + ~)jr Vcj ) (1/2t] 2 

J 
~ x i  xj (0it Tci OjrTcj)~)~)(Oi, Vci + ~jr Vcj)(1/2) t j 

(20) 

The conformality between the constituents of the mixture 
and the reference fluid is made by using the shape factors in 
Eq. (20), which can be evaluated through the relationship that 
makes the compressibility and residual Helmholtz free energy 
of the mixture conformal to those of the reference fluid at e- 
quivalent conditions of each component [Chen et at., 1982; 
Hang, 1985]. 

The concept of shape factor is utilized in the HSE confor- 
mal solution method as well as the STRAPP, a commercial 
software which was developed at NIST and was proven to 
predict various thermodynamics properties of mixtures includ- 
ing the K-value in vapor-liquid equilibria very well. 

M O D I F I C A T I O N  OF HSE 

The original HSE theory yields good agreement with the 
experimental thermodynamic data for light hydrocarbon mix- 
ture systems. However, there is a limit to the molecular size 
and shape difference in mixtures where the intermolecular re- 
pulsion can be represented by a hard-sphere mixture. When the 
shape of molecules deviates appreciably from sphericity, the 
hard sphere model that is used in the original HSE could 
lead to large error in the prediction of phase equilibria. To 
overcome this drawback, this work replaces the HS equation 
of state by the HCB equation of state for the repulsion term 
assuming that the molecules in mixtures can be described as 
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the hard convex body model. 
There has been much interest in developing the molecular 

models describing nonspherical molecules. One of these mod- 
els is the convex body (CB) model. A convex body is defin- 
ed as one in which any straight-line segment connecting two 
arbitrary points lies entirely within the body. Many research- 
ers [Gibbons, 1969; Boublik, 1974; Naumann and Leland, 1984] 
have tried to develop the HCB equation of state for improv- 
ing the role of the repulsion contribution to systems compos- 
ed of nonspherical molecules. 

The HCB equation of state proposed by Boublik [1974], 
which is based on the Kihara's geometry and is expressed 
in simpler form than Naumann and Leland's equation [1984], 
has the same form as Eq. (1) except the packing fraction de- 
fined as : 

: jO•X i V i (21 ) 

In Eq. (21), xi is the mole fraction of component i and Vj is 
its molecular volume. In the case of convex body, the dimen- 
sionless geometrical parameters ~ and 7 in Eq. (21) are defin- 
ed as : 

RS a = -=-_ (22) 
3V 

and 

r=  9~ z (23) 

with 

= ~ xiR i (24) 
n = l  

~'2 Y ~ x i R  i ( 2 5 )  
rl=l 

= Y, x iS  i ( 2 6 )  
n = l  

V =  ~ x,V, (27) 
n= l  

where Ri, Si, and V, are the mean radius, surface area, and 
volume of a molecule i, respectively, and are called three 
molecular dimensions. It can be shown easily that the paramet- 
ers a and yin Eqs. (22) and (23) reduce to those in Eqs. (3) 
and (4) in the case of hard sphere mixture. 

For a pure component, the dimensionless geometrical par- 
ameter cq measuring the degree of nonsphericity of molecules, 
is always greater than unity for nonspherical molecules and is 
equal to unity for spherical ones. The prolate spherocylinder 
model among the various kinds of the HCB models, which 
is geometrically well-def'med and simple, is considered to 
express nonspherical molecules in this work. The prelate spher- 
ocylinder model is shown in Fig. 2 where the dotted line de- 
notes the axis of rotation. The length-width ratio ~ in the 
spherocylinder model is defined as follows : 

a = L / W  (28) 

where L and W are the length and width of a spherocylinder, 

Fig. 2. Prolate spherocylinder. 

respectively. 
Three molecular dimensions of a spherocylinder are, then, 

expressed in terms of c and W as follows : 

R = W(a + 1)/4 (29) 

s = , t w 2 a  (30) 

V = n'W3(3a - 1)/12 (31) 

As shown in Eqs. (28)-(31), three molecular dimensions need- 
ed to evaluate the parameters ct and y for a spherocylinder can 
be determined if the values of a molecular dimension W and 

are given. 
As pointed out by Pitzer [1955], the acentric factor, co, re- 

presents both molecular geometry and polarity. For nonpolar 
or slightly polar hydrocarbon molecules, the acentric factor 
is assumed to represent only molecular geometry, that is, how 
much its geometry deviates from sphere. With such an assump- 
tion, the acentric factor for a component i can be considered 
to be the function of its length-width ratio only, i.e., 

= f((q) (32) 

With the known value of coi for a pure component, therefore, 
the length-width ratio can be evaluated from Eq. (32) and 
such a relationship will be obtained in order for the better 
prediction of the K-values in this work. 

While the length-width ratio is determined from the acen- 
tric factor, another molecular dimension W in Eqs. (29)-(30) 
is still left to be determined. Once the diameter of the refer- 
ence fluid (dr) is evaluated using the variational method in 
the HSE method as explained before, the diameter of a com- 
ponent i (di) in the mixture is computed using Eq. (12). Un- 
der the assumption that the volume of a hard convex body, 
Vi, is equal to that of  a hard sphere, the volume can be cal- 
culated from the hard sphere diameter of a component i, i.e., 

Vl = nil3/6 (33) 

Vi in Eq. (33) is referred to as the equivalent volume of 
the convex body in this work and used for the molecular di- 
mension V in Eq. (21). With the known values of (~i and V~, 
the width W and two other molecular dimensions R and S can 
also be determined from Eqs. (29)-(31). 

The method to get the thermodynamic properties of mix- 
tures according to an improved HSE in this work, therefore, 
can be summarized as follows: 
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X m ( W m , P m , { X i } ) = X +  + X - 

: xHCBM(jOm, {d i ]% {CO/}, "IX i }) 

+ [X ES (pr ~ Tr ~ - XrnCB(prodr 3, a~)] (34) 

where X represents any dimensionless residual property, sub- 
scripts m and r indicate the mixture with mole fraction {x~} 
and reference fluid, respectively. Also, the superscript ES in 
Eq. (34) denotes an equation of state, that is, the total property 
determined from the equivalent temperature and density con- 
ditions for the reference fluid. It can be known that the attrac- 
tion contribution of the mixture is replaced by that of the ref- 
erence fluid by the CSP with the shape factors that are used 
in defining the equivalent conditions as in Eq. (14). 

As in Eq. 04) ,  any dimensionless residual property of mix- 
ture can be computed from the repulsion and attraction con- 
tributions through the perturbation method. While the repul- 
sion part is determined directly from the equation of state for 
the hard convex body, the attraction one of the mixture is evalu- 
ated from that of the reference fluid where the concept of 
CSP is used. Compared with the original HSE as in Fig. 1, it 
can be shown that the repulsion contribution term of the mix- 
ture and that of the reference fluid in the attraction term are 
obtained by replacing the HS terms with the corresponding 
HCB terms. 

For vapor-liquid equilibrium calculations, fugacities of com- 
ponents in each phase are obtained from : 

t x i e ) = - l n z + ( z - 1 ) +  t RT ) 

+ n ~  ( A -  A* ~ (35) 
~ni t, RT )~,p,-j.i 

In Eq. (35), f~ represents the fugacity of component i, n the 
total moles and ni the moles of component i in the phase. The 
vapor-liquid equilibrium constant K~ of each component is cal- 
culated from the partial fugacities of both phases. 

(fL/xi P ) 
K i -  (fV/yip ~ (36) 

where xi and y~ axe the mole fractions of component i in liquid 
phase and vapor phase, respectively. 

prolate spherocylinder model among the various hard convex 
bodies. In the vapor-liquid equilibria calculation, thermody- 
namic properties are extremely sensitive to the unlike-pair in- 
teraction factor ~ij in Eqs. (19) and (20). While ~,ij is always 
set to unity in this work as in the original HSE theory, ~0 is 
adjusted to give better prediction of the K-value results. 

To test the improved HSE method in this work, six binary 
systems containing methane and another hydrocarbon up to 
n-hexane were employed: methane-ethane, methane-propane, 
methane-n-butane, methane-n-pentane, methane-n-hexane, whose 
dissimilarities between two molecules are as large as possible. 

Considering the length-width ratio an adjustable paramet- 
er for each component, the length-width ratio for each com- 
ponent was optimized to fit the experimental data on the K- 
values. Fig. 3 shows the results of the K-value of the methane- 
n-butane system at 277.6 K and this work gave a slightly bet- 
ter prediction of the K-value than the original HSE. 

When the length-width ratio of each component for a sys- 
tem was optimized, the results were always better than the 
original HSE. Since the length-width ratio should be assum- 
ed to be independent of temperature just as the acentric fac- 
tor, it is necessary to express its values of all components 
tested in this work in terms of the acentfic factor. Fig. 4 shows 
the values of the length-width ratio for methane through n-hex- 
ane; the length-width ratio becomes larger as the number of 
carbon of a component increases, as expected. The regression 
of those values gives the following relationship between the 
acentric factor and the value of length-width ratio : 

= 1.003 - 1.318~o i + 14.262o92 - 13.482~ 3 (37) 

Using the values of the length-width ratio from Eq. (37), 

RESULTS AND DISCUSSION 

As explained above, the method of determining the diame- 
ters of the reference and each component in the mixture is 
very important in this work. The procedure to evaluate the 
diameter of the reference fluid requires an equation of state 
for the pure reference fluid with the capability of predicting 
accurate second derivatives of P-V-T properties and accurate 
residual constant volume heat capacities. In this work, the MB- 
WR equation proposed by Jacobsen and Stewart [1973] with 32 
constants was used for that purpose. 

The original HSE is modified by replacing the HS equation 
of state in the repulsion term by the HCB equation of state 
in order to overcome its shortcoming. This work calculates 
the K-values in the binary hydrocarbon system under the as- 
sumption that molecules in the mixture are described as the 

Fig. 3. The results of the K-value of methane-n-butane system 
at 277.6 K. 
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Fig. 4. The relationship between the length-width ratio (a) and 
the acentric factor (r for methane to n-hexane. 

the K values for the binary mixtures tested in this work were 
calculated and listed in Table 1. As shown in Table 1, the 
results by this method for methane-ethane, methane-propane 
system, which are composed of relatively spherical molecules, 
were not much better than the original HSE method. For me- 
thane pentane, methane-hexane systems, this method provided 
significant improvement in prediction of K-values as expected. 

However, there is a limit to molecular size and shape dif- 
ference in mixtures where the intermolecular repulsion can be 
represented by hard convex body mixtures in this work. The 
nonspherical component which can be treated as in this work 
might be n-octane. In the case of mixtures containing highly 
dissimilar molecules, the hard convex body expansion (HCBE) 
conformal solution method [Kwon and Leland, 1989] can be 
used. 

C O N C L U S I O N  

The original HSE theory calculates thermodynamic proper- 
ties of a mixture by separating its properties into contribu- 
tions from molecular repulsion, which are calculated directly 
from a hard sphere mixture equation of state, and other con- 
tributions from various types of intermolecular attraction, which 
are obtained by the CSP from the known values of similar con- 
tribution in a pure reference fluid. The advantages of the HSE 
conformal solution theory are to avoid the use of empirical 
mixing roles involved in mixture calculations and to represent 
better composition dependence. However, the original HSE meth- 
od cannot predict thermodynamic properties of mixtures well 
which contain highly nonspherical molecules since all the radial 
distribution functions of the mixture are assumed to be obtained 

Table 1. Results on the K-value calculations for several binary 
hydrocarbon systems 

System K-value Temp. No. of ~ij K-value AAD 

comp. 1-comp. 2 ref. (K) data HSE This work 

methane- A 158.2 5 0.993 3.5 3.4 
ethane 172.0 9 0.990 2.0 1.8 

189.7 8 0.991 2.8 2.5 
199.9 7 0.994 1.4 1.0 

methane- B 277.6 11 0.927 2.8 2.8 
propane 294.3 13 0.937 2.3 2.1 

310.9 9 0.928 2.9 3.0 
344.3 8 0.917 1.5 1.8 

methane- C 233.2 9 0.871 8.3 7.7 
n-butane 244.3 9 0.899 7.4 5.6 

255.4 8 0.881 6.8 4.5 
277.6 13 0.884 6.4 4.8 
310.9 17 0.875 4.2 3.5 

methane- D, E 176.4 6 0.852 12.0 8.7 
n-pentane 191.1 9 0.865 9.8 7.3 

227.7 8 0.845 6.5 4.3 
273.2 10 0.869 7.5 4.2 
344.4 6 0.837 6.3 5.9 

methane- F 210.8 13 0.802 18.1 12.5 
n-hexane 273.2 20 0.791 10.4 8.7 

323.2 10 0.786 11.5 9.5 
348.2 10 0.752 10.2 6.0 
423.2 10 0.772 9.3 4.3 

References: (A) Wichterle and Kobayashi [1972], (B) Reamer 
et al. [1950], (C) Sage and Lacey [1955], (D) Chu et al. [1976], 
(E) Kahre [1975], (F) Shim and Kohn [1972]. 

by that of a pure reference in the MDA. 
To overcome the drawback of the original HSE, this work 

substitutes the HCB equation of state for the HS equation of 
state in the repulsion term assuming that molecules in the 
mixture are described as the prolate spherocylinder model. 
Under the assumption that the departure of molecular shape 
from sphericity results in the deviation from the simple CSP, 
the relationship between the acentric factor and the value of 
length-width ratio was obtained. 

Defining the equivalent volume of a convex body whose 
volume is the same as that of a hard sphere evaluated from 
the HSE method, this work produced better results of K- 
values in hydrocarbon mixtures than the original HSE method. 
This might be due to a better description of the repulsion con- 
tribution. For systems containing polar components, asymmet- 
rical attraction terms such as electrostatic, induction, and dis- 
persion contributions should be also taken into account and 
will be published later. 

N O M E N C L A T U R E  

A : Helmholtz free energy 
ao : proportional parameter 
bo : proportional parameter 
d : hard sphere diameter 
f : fugacity 
g : radial distribution function 
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K : equilibrium ratio, y/x 
k : Boltzmann constant 
N : system of N molecules 
n : number of moles 
P : pressure 
r : separation distance between molecular centers 
T : temperature 
U : total potential energy function 
u : potential energy function 
V : volume 
X : dimensionless residual thermodynamic property 
x : mole fraction; liquid phase mole fraction 
y : vapor phase mole fraction 
Z : compressibility factor 

Greek Letters 
ct : dimensionless geometrical parameter in the HCB equation 

of state 
y : dimensionless geometrical parameter in the HCB equation 

of state 
: energy parameter in a two-parameter pair potential energy 

function 
rl : packing fraction in the HS or HCB equation of state 
0i, : energy shape factor of component i which is related to 

reference r 
~j : unlike pair interaction factor 
{ij : unlike pair interaction factor 
t~ : distance parameter in a two-parameter pair potential 

energy function ; length-width ratio of a spherocylinder 
~i, : volume shape factor of component i 

: acentric factor 

Superscripts 
ES : equation of state 
HS : hard sphere 
HSM: hard sphere mixture 
L : liquid phase 
o : equivalent condition 
ref : reference fluid property 
V : vapor phase 
�9 : property of an ideal gas state of a fluid 
' : pseudo-critical property 
- : pseudo-parameter condition ; average property 
+ : repulsion 
- : attraction 

Subscripts 
C : critical property 
i : component i 
j : component j 
N : component N ; total property of a system of N molecules 
o : universal function for pure fluids ; condition at characteristic 

temperature 
r : reference fluid 
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